반도체 전공트랙 사업 설명회

(부처 협업형 인재양성사업 – 교육부, 산업통상자원부)

2022. 7. 26.

정보전자전공 / 금오공과대학교

차례

- 1. 사업 목표
- 2. 대학 중점 특성화 분야 및 자율혁신계획과의 연계성
- 3. 사업 추진 내용
 - 정보전자전공의 교육역량
 - 참여전공 및 전공 신설 계획
 - 교육과정 구성, 운영계획 및 교육과정의 질 제고
 - 학생 참여 지원계획
 - 산학협력 체계 구축 및 활성화 계획
 - 성과 활용 방안 및 기대효과
 - 전담 조직
- 4. 수혜학생 선발

1. 사업 목표 - 사업 목표 및 추진 전략

❖ 사업 비전 및 목표

- 4차 산업혁명의 반도체 산업을 주도할 전문적인 인재를 양성하여 취업, 창업 및 진학을 지원
- 반도체 회로 및 시스템 설계분야의 산업 맞춤형 실무교육을
 통한 전문인재 양성

반도체 산업을 주도할 능동적 전문인재 양성 비 전 목표 반도체 회로 및 시스템 설계분야 전문인력 양성 및 산학협력체계 구축 교육환경 구축 실무교육과정 개발 및 운영 취업/창업 및 진학 지원 ● 2023년 반도체시스템전공 신 ● 반도체 6명, 시스템 5명 전임교 ● 수혜학생-컨소시엄기업 매칭 원 재직, 반도체설계 분야 교원 설 (2022년 3월 교육부 승인) 통한 실무교육 및 취업연계 추진 ● 산업 맞춤형 실무교육과정 신규 채용 (2022학년도 2학기) ● 성과교류회, 회사설명회 및 취 ● 본교 "회로설계교육센터" 활 (FPGA, 디지털 프론트엔드, 업박람회 통한 취업/창업 지원 전략 용 및 반도체 설계 교육 기자 백엔드, Full Custom IC, 펌 ● 학/석 연계과정과 대학/산학 재 및 환경 추가 인프라 구축 웨어 SoC 설계) 개발 및 운영 장학금 확대, 수행 중인 "차세 ● 34개 반도체 산업체, 관련 연 ● 산학프로젝트와 현장실습 운 대반도체시스템전문인력양성 구소 및 기관과의 교육 협력 영 및 인턴쉽 통한 취업연계 사업" 연계 통한 진학 지원

연차별 목표 2024~ 시스템 활성화 및 자립화 2022 2023 *지스템* 구축 시스템 반도체 설계 전문인력양성 시스템 체계화 활성화 및 자립화 수혜학생 80명 이상 모집 및 교육 반도체시스템 전공 신설 준비 및 반 반도체시스템 전공 신설 통한 반도체 도체 설계 전문인력양성 시스템 구축 설계 전문인력양성 시스템 체계화 ■ 수혜학생 80명 이상 모집 및 교육 ■ 수혜학생 40명 이상 모집 및 교육

❖ 연차별 정량 목표

 자율지표: 단기교육과정, 취업지원프로그램, 마이크로디그리 이수, 교재 및 동영상 컨텐츠 개발, 성과발표회

					목표		계
구분	성고	라지표명	단위	'22	'23	'24	(평균)
	수	명	40	80	80	200	
	바	출인원	명	0	40	40	80
	2	취업률	%	-	75	80	(77.5)
	교과목	개발	건	0	5	1	6
필수 지표	╨╨ᅕ	개선	건	5	4	1	10
\\\\\	산학	지원과제	건	0	10	10	20
	프로젝트	참여인원	명	0	40	40	80
		수혜학생	%	80	85	88	(84.3)
	만족도	컨소시엄기업	%	80	85	90	(85)
	단기	지원과제	건	2	3	3	8
	교육과정	참여인원	명	30	45	45	120
TI 0	취업지원	건수	건	1	2	2	5
자율 지표	프로그램	참여인원	명	20	40	40	100
7144	마이크를	로디그리 이수	건	-	40	50	90
	교재 및 동역	영상 컨텐츠 개발	건	4	4	4	12
	성그	과발표회	건	1	1	1	3

2. 대학 중점 특성화 분야

- ❖ 대학의 중점 특성화 분야
 - 2022년 자율혁신계획에 맞춰 4차 산업혁명 및 신기술분야, 그리고 경북/구미 장기 발전전략 반영
 - ▶ 반도체 회로 및 시스템 설계분야는 **반도체·ICT융복합**의 세부 분야인 **반도체** 분야에 해당

경북 산업혁신 新전략 7대 핵심분야		구미시 신산업 Big 5+1		금오공과대학교 특성화분야
전기ㆍ자율자동차		이차전지	7	
인공지능]	반도체 · ICT융복합
5G융합기기		도심항공교통		메카트로닉스
		미래자동차		
차세대 반도체		스마트제조		첨단소재 • 부품
미래혁신 소재		1=/12		탄소중립
]	방위산업		TI 00 7 7 11
바이오·헬스		지능형 반도체	ĺ	지역공공성
라이프 테크		~\00 L±M		

3. 사업 추진 내용 - 정보전자전공의 교육역량

- 금오공대 정보전자전공 모든 전임 교원 사업 참여
- 반도체 분야 비교과 교육과정의 교육역량
- 반도체 설계 분야: 6명의 전임교원 재직 중, 2023학년도 1명 신규채용 예정
- 시스템 분야: 전력, 제어, 통신 분야에 5명의 전임교원
- 전공 교원의 저서 활동 (최근 10년간 반도체 분야 17권 출판)


- 금오공대 회로설계교육센터 운영
 - 디지털/아날로그 집적회로 설계, PCB 설계 등 반도체 회로 설계 관련 실무교 육 및 관련 인증 교육을 진행
 - 리버트론(XILINX 협력기업), 나인플러스 IT(CADENCE 협력기업)와의 업무협약을 통해 반도체설계 인증교육을 진행

- 반도체설계 인력양성 사업 수행 (산업통상자원부 지원)
 - 2006년 ~ 2008년: 고부가가치 산업인력 특별양성과정사업-차세대 반도체 디지털회로설계 분야 인력양성 사업 (학부)
 - 2010년 ~ 2011년: IT SoC 핵심설계인력양성사업 (대학원)
 - 2012년 ~ 2013년: 시스템반도체 설계인력양성사업 (대학원)
 - 2016년 ~ 2021년: 지능형반도체 설계전문인력양성사업 (대학원)
 - 2021년 ~ 2026년: 차세대시스템반도체 설계전문인력양성사업 (대학원)

회로설계 인증과정

반도체 - 디스플레이 진중교육과정

디지털 회로 설계(Xilinx FPGA 인증과정) 및 아날로그 회로 설계

- 2018년 ~ 현재 국립대학육성사업, ICT산업 지역인재양성사업 및 4차

ETRI 및 한국반도체산업협회와의 취업연계교육

- 2016년 ~ 2021년 반도체설계 관련 정규 교과목 이수한 본교 재학생 58명이 ETRI, 한국반도체산업협회와 연계교육, 약 91% 취업률 달성

3. 사업 추진 내용 - 참여전공 및 전공 신설 계획

❖ 참여전공 현황

	학과 현황									
구분		교원 현황		재학	생 수	신입생 수				
	전임교원	비전임교원	사업 참여 교원	2021	2022	2021	2022			
정보전자전공	11명	1명	11명	310명	261명	72명	74명			
(전자공학부)	(36명)	(3명)	(11명)	(867명)	(921명)	(216명)	(214명)			

❖ 반도체시스템전공 신설

- 2023학년도부터 전자공학부 "정보전자전공"을 "반도체시스템전공"으로 전환
- 진행 경과
 - 2021년 12월 : 학부에서 대학 본부로 전자공학부 "정보전자전공"을 "반도체시스템전공"으로 변경 신청
 - 2022년 1월 : 본교 교무처에서 교육부로 전공 명 의 변경 승인 요청
 - 2022년 3월 : 교육부 승인
 - 2022년 5월 : 금오공과대학교 학칙 변경 진행 중
 - 2022년 6월 ~ : 교육과정 개편 예정

교육부

수신 금오공과대학교총장

제목 2023학년도 국공립대학 학생정원 조정내역 알림(금오공과대)

- 가. 「고등교육법」 제32조(학생의 정원) 및 같은 법 시행령 제28조(학생의 정원) 등 나. 고등교육정책과-15722(2021.11.25.) [2023학년도 대학 학생정원 조정계획 안내(수정)]
- 2. 2023학년도 대학 학생정원 조정내역을 붙임과 같이 알려드리니, 새로 조정되는 모집단위를 반영하여 학칙을 개정한 후, 귀 대학 홈페이지에 공고하시기 바랍니다.
- 3. 또한, 대학입학전형시행계획 관련 업무가 차질없이 진행될 수 있도록 대교현 일정에 맞춰 수 정사항이 반영된 시행계획을 대표협에 제출하여 주시기 바랍니다.
- 아울러, 사후 이행점검 시 관련 법령에 따른 교육여건(교사·교지·교원확보율) 미충족 등으로 행정처분 사유가 발생되지 않도록 각별히 유의하시기 바랍니다.
- 불일 2023학년도 국공립대 학생정원 조정 내역 1부. 끝.

전화번호 044-203-6664 팩스번호 044-203-6939 / smlee1538@korea.kr / 비공개(5,7)

2023학년도 대학별 학생정원 조정 내역

금오공과대학교

□ 총괄

구 분	2022학년도 입학정원(A)			2023학년도 입학정원(B)			중감(B-A)			
1 1	주간	야간	계	주간	야간	껸	주간	야간	계	
입학정원	1,218	-	1,218	1,214	•	1,214	△4	-	Δ4	

□ 모집단위별 변동 현황

		2022	학년도				2023	학년도			중감(B-A)		
•	모집단	가위명	입학정원(A)		모징대	모집단위명		입학정원(B)			8-H (D-A)		
		_ ,, 0	주간	야간	계	- 6	조립단키경		야간	계	주간	야간	계
		정보전추전공					반도체 시스템전공						
		제어및로봇 전공					제어및로봇 전공						
	전자공학부	전식통신전공	206	-	206	전자공학부	전작동신전공	206	-	206	-	-	-
		전자및전과 전공					전자및전파 전공						
		전자IT 응합전공					전자IT 음합전공						
		고분자공학 전공				고분자	공학과	32	-	32	-	-	-
	화학소재 공학부	소재디자인 공학전공	98	-	98	소재디자	인공학과	34	-	34	-	-	-
	ŝ	화하공하건공				화학공학과		32	-	32	-	-	-
	컴퓨터	공학과	81	-	81	컴퓨터	공학과	77	-	77	△4	-	△4

3. 사업 추진 내용 - 교육과정 현황 및 개선점

❖ 2022년 3월 기준 정보전자전공의 교육과정 현황

1학년 1학기	1 학년 2 학기	2 학년 1 학기	2학년 2학기	3학년 1학기	3학년 2학기	4 학년 1 학기	4 학년 2 학기		현 교과과정 내 반도체설계 교육과정에 대한 진단의견
	전자공학입문							구분	"2020년 산업계관점 대학평가 전자반도체 분야 컨설팅 결과보고서
	기초회로이론 및 실험	회로이론							– 금오공과대학교 정보전자전공 (ER2020-191-3491) "
		전자회로1	전자회로2	아날로그회로 응용설계	센서및응용회로	디지털집적회로	아날로그 집적회로		• 반도체설계에 필요한 주요 기본 직무 역량이 개론 수준에서 적절하게
		전자회로실험1	전자회로실험2					T 0	설계되어 있음
		디지털회로	HDL설계			SoC구조및설계	디스플레이공학	주요	• 반도체설계와 관련한 기초 이론 중심 교과목(전자회로, 디지털회로, 반
전공SW기초	알고리즘입문 및실습	C언어및실습	C언어응용실 습					특이 사항	 도체공정 등)과 응용 분야 교과목(아날로그집적회로, 디지털집적회로
대학수학1	대학수학2			마이크로프로 세서 및 실습	임베디드시스템 설계	머신러닝		및 장점	응용설계 등) 등 주요 기초 과목 설계가 적절하게 이루어짐
확률및통계	공학수학1	공학수학2		통신공학	디지털신호처 리				• HDL설계와 같이 설계 툴을 경험할 수 있는 교과목은 매우 바람직함
				제어공학	제어시스템	지능형제어 시스템및실습			
일반물리학1	일반물리학2	전기자기학1	전기자기학2	물리전자	반도체소자	반도체공정	반도체장비		• 반도체설계 관련 기초 직무를 모두 다루고 있는 것은 바람직하나, 이
일반물리학실험1	일반물리학실험2			전력전자	전기기기		에너지변환시 스템	문제점	해를 넘는 실무활용 수준의 차별화된 직무역량 교육과정은 부족함
일반화학1					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			및	• 전반적인 기초 역량 부분을 개론 형태로 정리하여 전반적인 역량을 올
	창의설계입문					창의설계프로 젝트1	창의설계프로 젝트2	개선사항	리는 것은 바람직함. 전반적인 지식수준을 넘어 차별화되고 전문화된
교과목 구분	MSC	기초공통	전공기초	전공심화	전공심화/응합(최 소1과목수강필수)	필수	선택		분야를 발굴하여 특화시키는 것이 필요함

❖ 특성화 분야 및 특성화 전공 체계화

구분	진출분야				
디지털회로 설계 엔지니어	디지털 프론트엔드 설계 엔지니어, 디지털 백엔드 설계 엔지니어 ,				
디자들의도 들게 핸지디어	FPGA 시스템 설계 엔지니어 등				
이나고그하고 서게 에지나이	아날로그집적회로 설계 엔지니어,				
아날로그회로 설계 엔지니어 	아날로그집적회로 레이아웃 엔지니어 등				
SoC펌웨어 설계 엔지니어	SoC기반 펌웨어 설계 엔지니어, 회로시스템 설계 엔지니어 등				

반도체 설계 분야 실무중심교육 브랜드 대학 및 학과로 자리매김

1

반도체설계 이론 및 실무역량 겸비한 학사급 실무인력양성

t

반도체설계 특화 전공 운영

3. 사업 추진 내용 - 반도체시스템전공 교육과정

- ❖ 산업계 수요 반영 교과목 개발/개선 계획 및 교과 체계도
 - 산업계 수요조사 진행: 컨소시엄기업 (설계 및 제조 기업, 설계전문기업, 세트 기업) 중 18개 회사에서 총 24명이 설문에 응답
 - 수혜학생들의 수강을 희망하는 전공 교과목 조사
 - 현장실습, 인턴쉽, 산학프로젝트 참여 여부 조사
 - 개발교과목 (6과목): 반도체시스템특론, Full Custom설계및레이아웃실습, 디지털백엔드설계, 시스템프로그래밍, 반도체평가분석

78			목표					
구분	2022	2023	2024	합계				
교과목 개발	건수	0	5	0	5			
교과목 개선	5	5	0	10				

.프 ^ /기그	_						
1학년 1학기	1학년 2학기	2학년 1학기	2학년 2학기	3학년 1학기	3학년 2학기	4학년 1학기	4학년 2학기
	반도체시스템 입문					반도체시스템특론 (신규개발)	
	기초회로이론 및실험	회로이론					
		전자회로1	전자회로2	전력전자회로	아날로그 집적회로	FullCustom설계 및레이아웃실습	반도체평가 분석
		EDA툴활용 전자회로실험1	EDA툴활용 전자회로실험2			아날로그및센서 회로응용설계	에너지변환 시스템
		디지털회로	HDL설계	디지털 집적회로	SoC응용설계	디지털백엔드 설계	디스플레이및 구동회로
전공SW기초	프로그래밍 입문및실습	C언어및실습	C언어응용실습			시스템프로그 래밍	
대학수학1	대학수학2			마이크로프로 세서및실습	임베디드 시스템설계	머신러닝	
확률및통계	공학수학1	공학수학2		신호및시스템	디지털 신호처리		
				제어공학	제어시스템	지능형제어 시스템및실습	
일반물리학1	일반물리학2	전기자기학1	전기자기학2	반도체물리	반도체소자	반도체공정	반도체장비
일반물리학 실험1					전기기기및 제어회로		
일반화학1							
	창의설계입문					창의설계 프로젝트1	창의설계 프로젝트2
교과목 구분	MSC	기초공통	전공기초	전공심화	전공심화/융합 (최소1과목수강필수)	필수	선택

❖ 특성화학과 교육이수 조건 및 반도체시스템전공 개설교과목

구분	교과목 분류	반도체설계 분야 특성화 학과	반도체시스템전공 개설교과목 학점 (과목수)	비고
	기초 공통	12학점 (4과목) 이상	27학점 (10과목)	타 산업분야
그 이 기저	전공 기초	15학점 (5과목) 이상	44학점 (16과목)	융합과정 1과목
교육 과정	전공 심화	21학점 (7과목) 이상	50학점 (18과목)	이상
	최소 이수 학점	48학점	70학점	(5과목 개설)
실무 교육	직무 훈련	인턴쉽(취업연계형), 현장실습, 산학프로젝트	인턴쉽, 현장실습, 창의설계프로젝트	산학 연계형

3. 사업 추진 내용 - 반도체시스템전공 마이크로디그리

❖ 최소 1개 이상의 마이크로디그리 이수를 통한 실무형 인재 양성 (세부 교과목 추후 확정)

마이크로	디그리 명	디지털회로 설계과정	마이크로	기그리 명	아날로그회로 설계과정		
		• 논리회로 기본 학습, 디지털 설계 방법론, RTL의 합성 및 Timing Simulation 이해			• RLC 소자의 전기적 특성 및 구성회로의 전기적 흐름에 대한 이해		
		• FPGA 보드를 이용한 하드웨어 검증 과정 및 방법의 이해			• 트랜지스터의 동작원리 및 대신호, 소신호 모델 해석에 대한 이해		
71	l B	• 시뮬레이션 Tcol을 활용한 통합 검증 방법의 이해	개.	0	• 트랜지스터의 물리적 구성 및 소자 연결을 위한 반도체 layer 구조의 이해		
1 1	l T	• 프로세서 아키텍처, 메모리 아키텍처 이해	∕п.	п	• 주파수에 따른 소자들의 전기적 특성 변화에 대한 이해		
		• 시스템 온 칩(SOC) 구현, 칩(chip) 검증(Design Verification) 이해			• 회로 설계 방법, 레이아웃 설계 방법, 설계 회로 검증 방법의 이해		
		• 반도체 소자, Roor Planning, 자동 배치배선하기, 레이아웃 검증하기 이해			• 반도체 소자, Floor Planning, 커스텀 레이아웃, 레이아웃 검증하기 이해		
	핵심	HDL설계(3학점)		핵심	아날로그집적회로(3학점), FullCustom설계및레이아웃실습(3학점)		
이수	0.0	디지털집적회로(3학점), SoC응용설계(3학점), 디지털백엔드설계(3학점),	이수	0.0	전력전자회로(3학점), 디지털집적회로(3학점), 아날로그및센서회로응용설계(3		
과목	응용	반도체공정(3학점) 중 최소 2과목 선택	과목	응용	학점), 반도체평가분석(3학점) 중 최소 1과목 선택		
	실무	창의설계프로젝트1(2학점), 창의설계프로젝트2(2학점) 중 최소 1과목 선택		실무	창의설계프로젝트1(2학점), 창의설계프로젝트2(2학점) 중 최소 1과목 선택		
이수	요건	13학점 이상 이수		요건	13학점 이상 이수		
예상	진로	디지털 프론트엔드 / 백엔드 설계 엔지니어, FPGA 설계 엔지니어 등	예상	진로	아날로그집적회로 설계 엔지니어, 아날로그집적회로 레이아웃 엔지니어 등		

마이크로디	그리 명	SoC펌웨어 설계과정				
개요		 내장 CPU 및 주변 하드웨어 분석하기 이해, 펌웨어 구현하기 이해, 펌웨어 드라이버 개발하기 이해, 펌웨어 관리하기 이해 펌웨어 요구사항 분석하기 이해, 펌웨어 설계하기 이해 				
	핵심	마이크로프로세서및실습(3학점), 임베디드시스템설계(3학점)				
이수 과 목	8	시스템프로그래밍(3학점), SoC응용설계(3학점) 중 최소 1과목 선택				
ᆈᆨ	실무	창의설계프로젝트1(2학점), 창의설계프로젝트2(2학점) 중 최소 1과목 선택				
이수 요건		13학점 이상 이수				
예상 진로		SoC기반 펌웨어 설계 엔지니어, 회로시스템 설계 엔지니어 등				
	.,,					

3. 사업 추진 내용 - 교육과정의 질 제고

😵 교원, 교육 컨텐츠, 교육 인프라의 확보 및 개선 방안

교원 확보

- 전공교수 11명의 전원 참여로 반도체시스템 전공교과목 운영
 - 반도체회로설계 5명, 반도체소자설계 1명, 전력/제어/통신시스템설계: 5명
- 2023학년도 신임교원 1명 초빙
- 디지털회로, SoC응용설계, 디지털백엔드설계 교과목 운영
- ETRI 소속 전문경력인사(권종기 박사), 산업체 외부강사 활용 반도체시스템입문/특론 및 실무 교육 진행

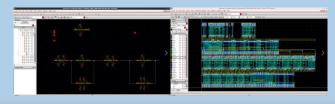
2022학년도 2학기 금오공라대학교 교수초병 공고

최일 있는 교육과 경의적인 연구를 통해 국가와 지역 발원을 선도함 수 있는 권임교원(교육장무원)을 초명하고자 하오니 많은 지원 바랍니다. 2022년 4월 6일 당군 본본인 및 인행의원교수 16명, 산학합복용점교수 2명(

학자, 전화 조물이 10명, 전학 10명, 산학합복용점교수 2명(

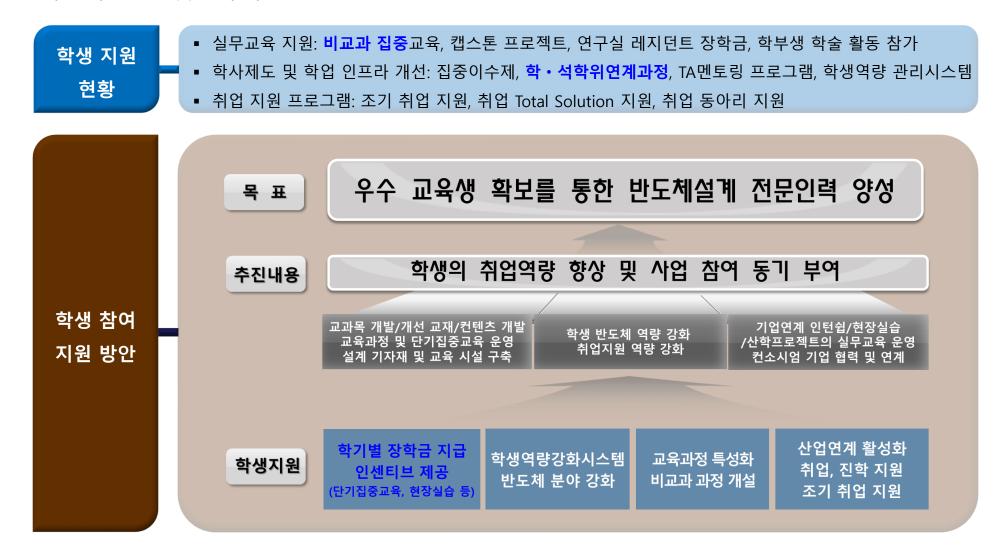
학자, 전화 10명, 전화

교육 컨텐츠 확보 ■ 반도체회로 분야 교과목을 위해 19개의 동영상 컨텐츠가 KOCW(Korea Open Course Ware) 등록



- 반도체회로 분야 교재 17권 출판
- 본 사업 통해 반도체시스템 분야 교육 컨텐츠 18건(교재 4건, 강의 동영상 8건, 강의노트 6건) 개발 및 5건 개선

교육 인프라


- 기존 회로설계교육센터 및 반도체회로 관련 교과목 운영을 위한 교육 인프라 활용 예정
- 기존 인프라 개선: 컴퓨터실 (실습테이블) 및 캡스톤디자인실 (VirtualTop 통한 S/W 운영) 환경 개선
- 신규 인프라 확보: Zyng FPGA 실습보드(SoC응용설계), Cadence Virtuoso (FullCustom설계및레이아웃실습)

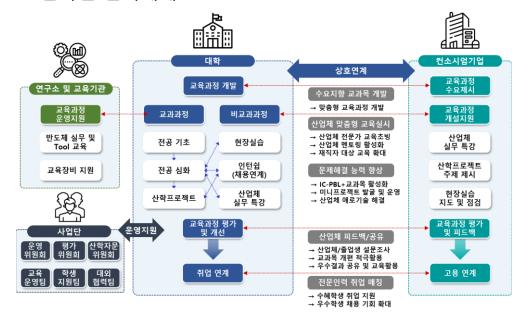
3. 사업 추진 내용 - 학생 참여 지원

🔅 학생 지원 현황 및 참여 지원 방안

의무사항: 방학 중 단기집중교육 1회 이상, 현장실습, 인턴쉽, 산학프로젝트 중 1건 이상 진행

3. 사업 추진 내용 - 산학협력 체계 구축 및 활성화

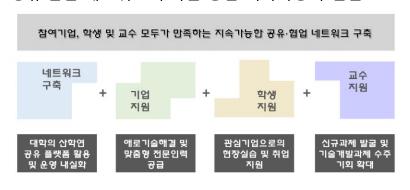
🔅 산학연협의체의 구성



산학연 협력체계

목표

추진


전략

산학협력 활성화 계획

- 산학협력 지속가능화 계획
 - 교수자 및 학습자, 참여기업 모두가 만족할 수 있는
 공유·협업 네트워크 구축을 통한 지속가능화 실현

3. 사업 추진 내용 - 현장실습, 인턴쉽 및 산학프로젝트

❖ 현장실습 및 인턴쉽 운영

 구분	구분	연계 교과목		기업명	참여인원	책임자	
—————————————————————————————————————		학점	평가 방법	7188	(명)	격임자	
4 + 1 1 =	현장실습 (겨울방학/3학년)	방학중 현장실습1		어보브반도체㈜	2	오제훈	
1차년도 (총 5명)				㈜커넥스트	2	홍종욱	
(6 36)		전선3	S/U	㈜파츠	1	민복기	
	현장실습	방학중 현장실습1		㈜퀄리타스반도체	2	최광천	
	(여름방학/3학년)	전선3	S/U	㈜케이이씨	1	권순탁	
	현장실습(겨울방학/3학년)은 1차년도와 동일하게 운영						
2차년도	현장실습	방학중 심화형 현장실습1		㈜솔리드뷰	1	최재혁	
(총 15명)	(여름방학/4학년)	전선3, 일선3	S/U	㈜네오와인	1	강신석	
	인턴쉽 (4학년 2학기)	취업연계 현장실습5		어보브반도체㈜	2	김윤기	
		전선3, 일선6	S/U	㈜커넥스트	2	홍종욱	
				㈜오토실리콘	1	손영석	
3차년도 (총 20명)	기존 참여기업의 현장실습 및 인턴쉽은 2차년도와 동일하게 운영						
	인턴쉽 취업연계 현		현장실습5	㈜퀄리타스반도체	3	최광천	
	(4학년 2학기)	전선3, 일선6	S/U	㈜픽셀플러스	2	최일석	

❖ 산학프로젝트 운영 (창의설계프로젝트와 연계하여 진행)

구분	프로젝트명	기업명	참여인원		책임자
丁正	프로젝트링	기합정	학생	교수	색임사
1차년도	해당 없음				
2차년도 - - -	경량 블록암호를 이용한 개인정보(지문) 암호화 및 출입 인증 시스템	㈜네오와인	4	1	강신석
	경량 블록암호 알고리듬의 하드웨어 구현 및 FPGA 검증	어보브반도체㈜	4	1	김윤기
	64X64 해상도를 가지는 CMOS 이미지센서 설계	㈜픽셀플러스	4	1	최일석
	Delta-sigma ADC를 위한 디지털 필터 설계	㈜커넥스트	4	1	홍종욱
	화재감지용 CMOS 연기 감지센서 설계	㈜솔리드뷰	4	1	최재혁
	Switched-Capacitor 필터 설계	㈜오토실리콘	4	1	손영석
	클록발생기 (PLL: phase locked loop) 설계	㈜리가스텍	4	1	김창선
	고속 데이터 송수신기 설계	㈜퀄리타스반도체	4	1	최광천
	Pipelined ADC 설계	㈜DB하이텍	4	1	고재홍
	128X1 해상도를 가지는 CMOS 변위센서 설계	㈜해치텍	4	1	윤준열
	Delta-sigma ADC 위한 아날로그 모듈레이터 설계	㈜옵토레인	4	1	이상훈
3차년도	SoC FPGA를 이용한 타원곡선 암호 기반의 디지털 서명 알고리듬 (EC-DSA)의 HW-SW 통합 구현	㈜네오와인	4	1	강신석
	2D CMOS 이미지센서를 활용한 태양센서 설계	㈜픽셀플러스	4	1	최일석

3. 사업 추진 내용 - 성과 활용 방안 및 기대효과

대학-기업 상생 협력 교육 및 관리 모델 수립

목표

반도체 시스템 신기술 세부 분야별 마이크로디그리 기반 대학-기업의 교육 협력 모델 정착

수요조사

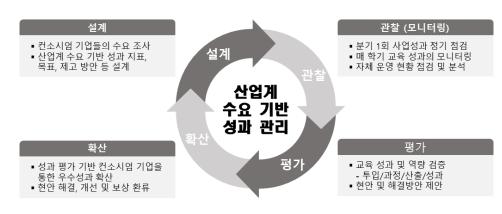
- 산업체 및 연구소의 인력양성에 대한 의견 조사 및 수렴
- 요구 사항을 바탕으로 한 교육과정, 교과목, 강의 내용 조율

평가

- 교육 성과를 자체 분석 및 평가
- 가시화된 성과를 홍보함으로써 학생들의 취업 및 진학의 진로를 지도

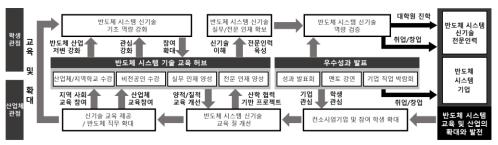
수요 맞춤형 교육 진행

- 컨소시엄기업들의 특성을 반영한 반도체 설계 분야 특성화를 위해 회로, 소자/공정, 시스템/SW 의세부 분야로 구성
- 세부 분야별 마이크로디그리 운영 및 이수를 제도화하고 각 세부 분야를 기초공통, 전공기초/심화, 실무로 체계화
- 기초공통, 전공기초를 통한 비전공자 및 지역 기업/고등학교의 참여 확대
- 전공심화, 실무를 통해 기업의 수요를 반영 반도체 신기술 분야의 실무/전문 인재 양성

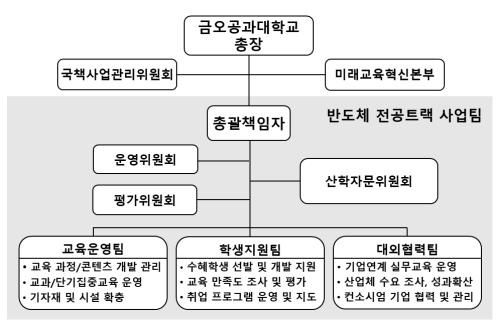

기대 효과

우수 성과를 통한 컨소시엄기업과 학생 확대 및 선순환적 교육 질 향상

- ❖ 기술 교육 허브 구축
 - 회로설계교육센터의 운영과 마이크로디그리 제도를 기반으로 반도체 시스템 기술 교육 허브를 정착화


회로설계교육센터 마이크로디그리 (학위) 제도 ■ 반도체 설계 관련 인증프로그램 운영 ■ 반도체 분야 별 트랙 제도를 도입하여 마이크로 학위 제도를 체계화 ■ 기업 업무 협약을 통해 반도체 설계 인증 교육을 진행함으로 비교과 실무 ■ 세부 주제 별 마이크로디그리 제도의 교육을 진행 체계화 및 이수 의무화 추진 반도체 시스템 기술 교육 허브 ■ 비전공자를 대상으로 반도체 시스템 ■ 산업체 및 지역 고등학교를 대상으로 시스템반도체 인력 양성 사업의 교육 기초 교과목 개설 프로그램 자문 및 운영 협력 제공 ■ 산업체 재직자를 위한 실무 교과목 및 8888 비교과 프로그램 교육 제공 비전공자 반도체 기초/비교과 교육 지원 산업체/지역 고등학교 반도체 교육 지원

- 😮 교육 성과 관리 체계
 - 운영위원회, 평가위원회, 산학자문위원회, 3개의 실무팀은 설계, 관찰, 평가, 확산 4단계로 구성된 환류 체계를 통해 산업계 수요에 기반한 교육 성과를 지속적으로 관리


화류 방안

- ▶ 반도체시스템 교육 허브를 중심으로 반도체 역량 강화 및 실무/전문 인재 확보
- 우수성과 발표를 통해 기업 및 학생의 관심을 제고하고 기업연계 취업 및 진학을 활성화

3. 사업 추진 내용 - 전담조직

❖ 전담조직 운영체계

구분	역 할	구성
운영 위원회	· 반도체 전공트랙 사업 운영 총괄 · 교육과정 및 교육방법 설계 및 운영 · 성과관리 및 확산을 위한 대내외 협력	내부와 외부를 3:3 비율로 구성
평가 위원회	· 교육 및 인력양성 성과 검증 · 성과 지표 및 운영 프로세스 평가	산업체 임직원, 연구소 연구 원 등 외부위원 중심으로 구성
산학자문 위원회	· 실무교육(산학프로젝트, 현장실습, 인턴쉽) 자문 · 운영 현안 및 개선방향에 대한 자문	컨소시엄기업의 임직원을 중심으로 구성
교육 운영팀	· 교과목 개발/개선 및 교재/컨텐츠 개발 관리 · 교육과정 및 단기집중교육 운영 · 설계 기자재 및 교육 시설 구축	교수 2명, 조교 1명으로 구성
학생 지원팀	· 수혜학생 선발 및 역량 개발 지원 · 수혜학생의 교육만족도 조사 및 평가 · 취업 프로그램 운영 및 지도	교수 2명, 조교 1명, 전문 컨설턴트 1명으로 구성
대외 협력팀	· 기업연계 인턴쉽/현장실습/산학프로젝트의 실 무교육 운영 및 기업 탐방 진행 · 산업체 수요 조사 및 성과 확산 · 컨소시엄기업 협력 및 관리	교수 2명, 연구원 1명으로 구성

- 총괄책임자: 장영찬 교수
- 교육운영팀: 석오균 교수, 김동하 조교
- 학생지원팀: 이원일 교수, 최영규 조교
- 대외협력팀: 장영찬 교수, 허휘경 연구원
- 운영위원회: 신경욱 교수, 정훈주 교수, 장영찬 교수

김윤기 위원(ABOV반도체), 최일석 실장(픽셀플러스), 고재홍 수석(DB하이텍)

4. 수혜학생 선발

- ❖ 수혜학생 대상 및 인원
 - 선발 대상: 2022학년도 2학기 전자공학부 정보전자전공 3학년 2학기 재학생 및 복학 예정 학생
 - ▶ 선발 인원: 44명
- ❖ 수혜학생 혜택 및 의무 사항
 - > 수혜 내용
 - 반도체 및 시스템 분야의 실무 교육 참여
 - 학기별 장학금 (60만원) 및 각 프로그램 활동비 지원(1주 기준 20만원)
 - ▶ 의무 사항: 방학 중 단기집중교육 1회 이상, 현장실습, 인턴쉽, 산학프로젝트 중 1건 이상 진행
- ❖ 선발 일정
 - 신청서 제출: 2022년 8월 12일(수) 17:00
 - 신청서 양식: 학과 홈페이지 공지사항, https://bit.ly/3zm6FfN
 - 제출 방법 및 담당자: e-mail (최영규 조교, ygchoi@kumoh.ac.kr)
 - 선발방법: 서류평가
 - 선발기준: 학부 전학기까지의 평점(70%), 참여 의지(30%) 학습 및 반도체기업 취업 의지
 - ▶ 1차 발표: 8월 29일(월), 학부 홈페이지

감사합니다!

Q&A